
ARTICLE IN PRESS
0165-1684/$ - se

doi:10.1016/j.si

�Correspond
fax: +886 3 735

E-mail addr
Signal Processing 87 (2007) 799–810

www.elsevier.com/locate/sigpro
A novel approach for vector quantization using a
neural network, mean shift, and principal component

analysis-based seed re-initialization

Chin-Chuan Hana,�, Ying-Nong Chenb, Chih-Chung Loc, Cheng-Tzu Wangd

aDepartment of Computer Science and Information Engineering, National United University, Miaoli, Taiwan
bDepartment of Computer Science and Information Engineering, National Central University, Taoyuan, Taiwan

cDepartment of Informatics, Fo Guang College of Humanities and Social Sciences, Ilan, Taiwan
dDepartment of Computer Science, National Taipei University of Education, Taipei, Taiwan

Received 6 December 2005; received in revised form 15 July 2006; accepted 7 August 2006

Available online 7 September 2006
Abstract

In this paper, a hybrid approach for vector quantization (VQ) is proposed for obtaining the better codebook. It is

modified and improved based on the centroid neural network adaptive resonance theory (CNN-ART) and the enhanced

Linde–Buzo–Gray (LBG) approaches to obtain the optimal solution. Three modules, a neural net (NN)-based clustering, a

mean shift (MS)-based refinement, and a principal component analysis (PCA)-based seed re-initialization, are repeatedly

utilized in this study. Basically, the seed re-initialization module generates a new initial codebook to replace the low-

utilized codewords during the iteration. The NN-based clustering module clusters the training vectors using a competitive

learning approach. The clustered results are refined using the mean shift operation. Some experiments in image

compression applications were conducted to show the effectiveness of the proposed approach.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Vector quantization (VQ) is an efficient and
simple approach for data compression. It was
derived from Shannon’s rate-distortion theory [1],
and has been successfully applied in image compres-
sion and speech coding. It encodes images by scalars
instead of vectors for obtaining better performance.
In the procedure for image compression, VQ first
e front matter r 2006 Elsevier B.V. All rights reserved
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partitions an image into several blocks to form a
vector set (input vectors). The input vectors are
individually quantized to the closest codeword from
a codebook. This codebook (e.g. a set of codewords)
was generated from a set of training vectors by
using the clustering techniques. An image was
encoded by the indices of codewords and decoded
by a table-look-up technique.

In general, VQ partitions a vector set X of size Np

into a codebook C of size Nc. That is X ¼

fx1;x2; . . . ;xNp
g, C ¼ fc1; c2; . . . ; cNc

g, and the di-
mensions of all vectors are m. Here, m is the size of
an encoded image block, and Nc5Np. To quantize
.
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each vector xk, a codeword cj is selected with the
shortest distance dðxk; cjÞ between xk and cj. The
Euclidean distance is the most used metric, i.e.,
cj ¼ qðxkÞ ¼ argminci2Ckxk � cik. Assume a univer-
sal set U of all possible codebooks. The better
codebook is obtained by minimizing the square of
errors between two sets X and C,

C ¼ argmin
qj2U

1

Np

XNp

k¼1

dðxk; qjðxkÞÞ
2

 !
. (1)

Linde et al. [1] proposed the famous Linde–
Buzo–Gray (LBG) algorithm to find the codebook
for image compression. However, the results of VQ
methods are much affected by the initialization of
the codebook. They are frequently trapped in the
local solution resulting in poor performance. Be-
sides, the low-utilized codewords in the generated
codebook distort the decoded images. There three
problems are still present in the LBG algorithm.
Patane and Russo [2] proposed the enhanced LBG
(ELBG) algorithm to find an optimal codebook by
means of shifting the low-utilized codewords to
another ones with high utility. This is a split-
and-merge-based algorithm for improving the uti-
lity of codewords. Kaukoranta et al. [3] also
proposed an iterative algorithm combining with
split and merge operations (ISM) for the generation
of a codebook. Haber and Seidel [4] modified the
LBG algorithm, called ILBG, to reduce the code-
book errors by a few additional iteration steps.
Huang et al. [5] proposed a novel algorithm to
improve the codeword utility and the training
performance by combining the genetic algorithm
and the simulated annealing technique. The cross-
over and mutation operations were based on the
simulated annealing process. The local optimal
solution was avoided.

Recently, many researchers have tried to solve the
problems in finding the optimal solution using the
neural network-based learning approaches. Lin and
Yu [6] proposed a centroid neural network adaptive
resonance theory (CNN-ART) to improve the
performance of VQ. CNN-ART, an unsupervised
and competitive neural network model, considered
the weights of neurons as the codewords. Although
CNN-ART relieved the dependence on the initiali-
zation of the codebook, it was still affected as can be
seen from the results. Besides, there is a low-utility
problem in their proposed approach with poor
initialization. Laha et al. [7] designed a codebook
using a self-organizing feature map technique.
During the training process, the weights of nodes
were considered to be the codewords. All weights of
nodes built up the codebook. However, the block-
effects frequently distorted the reconstructed
images. This problem was solved by a polynomial
surface fitting technique [7].

On the other hand, researchers tried to speed up
the process of finding the optimal solution. The tree
search vector quantizer (TSVQ) was the improbable
algorithm using a tree structure [8]. Chang and Lin
[9] eliminated most of the impossible codewords to
decrease the matched number for speeding up the
searching process. Chan and Ma [10] proposed a
fast maximum descent (MD) approach to quickly
find the codebook. Pan et al. [11] modified the
L2-norm pyramid encoding approach to decrease
the searching time. Chen [12] utilized the fuzzy
reasoning technique to predict the codewords for
improving the searching performance. Huang and
Chang [13] proposed a color finite-state LBG
(CFSLBG) algorithm to reduce the searching time
of the LBG algorithm.

Since the compression performance is much
affected by the codebook, the codebook generation
has a key role in VQ. In summary, four problems
frequently occur in the clustering process. They are
(1) the initial condition, (2) the local optimum

solution, (3) the low-utilized codeword, and (4) the
sequence of training vectors problems. Given a
training set X ¼ fx1;x2; . . . ; xNp

g, Np elements are
partitioned into Nc subsets and the sum of squared
errors in Eq. (1) should be minimized. There are
ðNcÞ

Np=Nc ways for partition. It is infeasible to find
the optimal partition by an exhaustive searching
approach. Iterative optimization is the most fre-
quently used approach. Nc initial codewords
c1; c2; . . . ; cNc

are randomly guessed. At each itera-
tion, Np training vectors are sequentially assigned to
the nearest codeword and a new codeword is re-
calculated as the mean of all instances belonging to
the same cluster. These two steps are repeated until
the codewords stabilize. The iterative procedure
guarantees local but not global optimization. The
found solution highly depends on the initial condi-
tion Ci and the sequence of training vectors
x1; x2; . . . ;xNp

. They are the well-known problems
of initial condition, local optimization, and sample
sequence. In addition to the sum-of-squared-error
criterion, the codeword utility is another indication
to evaluate the total distortions related to codeword
cj. The equalization of the codeword distortions is
equivalent to the equalization of the codeword
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utilities. According to the consequences in Ref. [2],
the aim of the clustering operations is to obtain the
equal distortion for each codeword in optimal VQ.
Therefore, discarding the low-utility codewords and
splitting the high-utility codewords into smaller
ones are the effective strategies to solve the low-
utility problem.

In this paper, a hybrid algorithm is proposed to
find a better codebook for image compression
applications. Three modules, a neural net (NN)-
based clustering, a mean shift (MS)-based refine-
ment, and a principal component analysis (PCA)-
based seed re-initialization, were integrated in this
study. It is abbreviated as PCA-NN-Meanshift
(PNM). Initially, a codebook of size Nc was
randomly generated. These codewords were in-
putted into the weights of a NN. Next, the training
vectors were clustered and the weights were adapted
up to a converged state. In addition, a MS-based
operation was performed to refine the codeword in
each cluster. However, a local optimal solution was
frequently obtained. Besides, codewords with low
utility were frequently generated. A PCA-based
process was performed to analyze the sample
distribution. New seeds were generated to replace
the codewords with low utility. These three modules
were repeatedly executed to find the better solution.
The rest of this paper is organized as follows:
The background of ELBG and CNN-ART are
briefly reviewed in Section 2. In Section 3, the
modules, NN-based clustering, MS-based refine-
ment, and PCA-based seed re-initialization, were
designed to find the better codebook. In Section 4,
some experiments in the image compression appli-
cation were conducted to show the feasibility of
proposed method. Some conclusions are given in
Section 5.

2. Background

In this paper, the ELBG and CNN-ART algo-
rithms were improved to obtain a better codebook
for VQ. Following is a brief description of the
backgrounds of these two algorithms.

2.1. Enhanced LBG algorithm

An ELBG algorithm was proposed by Patane and
Russo to improve the LBG method [2]. They
applied a utility rate for each codeword to enhance
the performance of the LBG algorithm. The main
improvement was based on a shifting of codewords
attempts (SoCA) procedure. Basically, a codeword
cl with a low-utility rate was heuristically shifted
to a nearby codeword ch with a high rate. Suppose
that a training set X assigned to codeword ch
was bounded in a hyper-box I ¼ ½x1l ; x1u��

½x2l ;x2u� � � � � � ½xml ;xmu�, and codeword ch was
the center vector of set X. Codewords cl and ch
were recomputed as cl ¼ ½x1l þ

1
4ðx1u � x1lÞ;x2l þ

1
4
ðx2u � x2lÞ; . . . ;xml þ

1
4
ðxmu � xmlÞ� and ch ¼ ½x1u�

1
4
ðx1u�x1lÞ;x2u�

1
4
ðx2u�x2lÞ; . . . ; xmu�

1
4
ðxmu � xmlÞ�.

All vectors in set X were re-clustered to these
two new codewords. That means two codewords
split the training vectors in set X. This is a split-and-
merge process. The largest cluster was split into two
clusters by two new codewords cl and ch, and the
smallest cluster was merged to another cluster. The
SoCA procedure is summarized as follows:
1.
 Check the stopping criterion: Check if at least one
codeword with a utility rate of less than 1 has
been shifted in the previous iteration. If not;ter-
minate the procedure.
2.
 Codeword selection: Select two codewords, a
codeword ch with a utility rate greater than 1
and a codeword cl with a rate less than 1, to
execute the codeword shifting process.
3.
 Codeword shifting and local rearrangement: Shift
codeword cl to codeword ch. After that, adjust
these two codewords by the traditional LBG
algorithm under a termination criterion with a
higher threshold.
4.
 Quantization error estimation: Calculate the ex-
pected values of quantization errors (QE) before
and after shifting. If value QE has decreased after
shifting, confirm the shifting process. Otherwise,
reset codewords cl and ch to their original
positions.

Repeat the above steps until the stop criterion is
satisfied. This ELBG algorithm is used to solve the
problem of local optimal solution.

2.2. Centroid neural network adaptive resonance

theory (CNN-ART)

Lin and Yu [6] proposed a novel algorithm,
CNN-ART, to generate a codebook. It is an
unsupervised competitive learning algorithm, and
is an extension of Grossberg’s adaptive resonance
theory [14]. Basically, the CNN-ART algorithm
considered the synaptic weight vectors in each
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neuron as codewords. The gradient-descent-based
algorithm was used as the weight updating rule.
CNN-ART started at a single node, i.e. the size of
codebook was initialized to one. The winner node
was rewarded with a positive learning gain and the
loser nodes were punished with a negative one for
the competitive learning rules. This approach is a
threshold criterion-based clustering approach. A
centroid node is increased as a new cluster when
the Euclidean distances between an input vector and
the existing nodes are larger than a vigilance value.
The CNN-ART approach repeated the incremental
process until the codebook size was Nc. The
algorithm is summarized as follows:
1.
 Initialization: Initialize the following variables:
the codebook size Nc, the initial codebook C0 ¼

; , the training set X ¼ fxk : k ¼ 1; 2; . . . ;Npg, a
pre-defined threshold v, and the iteration index
t ¼ 0.
2.
 Clustering: Given the codebook Ct at iteration t,
calculate the Euclidean distances between vector
xk and the weights in the network. Assign vector
xk to the node with the smallest distance.
3.
 Node increment or weight updating: If the smallest
distance was larger than threshold v, and the
node number was smaller than value Nc, generate
a new node. Otherwise, update the weights of a
winner with the rewarding rules and those of
losers with the punishing rules.
4.
 Check the stop criterion: When the state is stable,
the process is terminated.
5.
 Generate the codebook: If the codebook size was
Nc, and a converged and stable state occurred,
the codebook is assigned as the set of all nodes’
synaptic weights.

Due to the scenarios of the ELBG algorithm and
the CNN-ART algorithm, four problems should be
solved in the VQ process. To overcome these
problems and to improve the performance of the
ELBG or the CNN-ART algorithms, a hybrid
algorithm was developed in the following.
3. PNM for VQ

The architecture of PNM is composed of a PCA-
based seed re-initialization module, an NN-based
clustering module, and an MS-based refinement
module. They were iteratively performed to find the
optimal solution.
3.1. NN-based clustering

A simple MINNET network is a competitive
learning algorithm. It determines the nearest dis-
tance between an input vector and those in the
neuron’s weights for the output layer. The dimen-
sions of the input layer is m the same as the number
of each neuron’s synaptic weights because of the full
connection between them. Therefore, the weights in
a neuron are considered as a codeword. The main
difference between the PNM and the CNN-ART
architecture is the number of initial neurons. CNN-
ART repeatedly increases the neurons until Nc

nodes (the codebook size). Whereas Nc neurons are
initialized in PNM, and their weights are randomly
initialized. The functions of MINNET in PNM are
the same as those in CNN-ART. All neurons are
completely interconnected in MINNET. Each neu-
ron got the values from its original neuron and the
lateral inhibition ð��Þ from the other neurons. The
output value O

ðtÞ
j of the jth neuron at iteration t is

thus given as follows:

O
ðtÞ
j ¼ f t O

ðt�1Þ
j � �

X
iaj

O
ðt�1Þ
i

 !
and

i; j ¼ 1; 2; . . . ;Nc; tX1, ð2Þ

f tðbÞ ¼
b if bo0;

0 otherwise:

�
(3)

Here, the initial condition was set as

O
ð0Þ
j ¼ kxk � wjk. (4)

Value Nc denotes the number of neurons in net
MINNET, and �41=Nc. Each node was repeatedly
compared with the other nodes until only a negative
output was generated. Meanwhile, the other neu-
rons all outputted zero. The node with the negative
output was the desired codeword.

Next, let us describe the learning rules in PNM.
Similar to the rules in CNN-ART and LBG
algorithms, the rewarding equation is written below:

w
ðtÞ
j ¼ w

ðt�1Þ
j þ

1

jcjj þ 1
½xk � w

ðt�1Þ
j �,

k ¼ 1; 2; . . . ;Np; j ¼ 1; 2; . . . ;Nc, ð5Þ

and value 1=ðjcjj þ 1Þ is its learning rate.
The above learning approach plays a clustering

role in PNM. The training vectors were sequentially
clustered with the cluster centers (e.g., codewords,
the weights of nodes).
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3.2. MS-based refinement

After the NN-based clustering procedure, the MS
operation [15] was performed on each cluster to
refine the codeword. In this operation, the multi-
variate kernel density estimate with an observation
window W was estimated as

f̂ ðxÞ ¼
1

Nwhm

XNw

k¼1

ke
x� xk

h

� �
. (6)

Here, symbol x is an observation sample, values
m;Nw, and h represent the window’s dimensional
number, the sample number in window W, and the
window’s radius, respectively. The Epanechnikov
kernel function was applied in this procedure as

keðxÞ ¼
1
2

c�1m ðmþ 2Þð1� xTxÞ if xTxo1;

0 otherwise:

(
(7)

cm is the volume of unit sphere. The codeword
shifted towards to the next position by the density
gradient of Eq. (6) as

MhðxÞ ¼
h2

mþ 2

r̂f ðxÞ

f̂ ðxÞ
, (8)

r̂f ðxÞ is a density gradient estimate. According to
the conclusions in Ref. [15], the sample MS in a
uniform kernel centered on x is the normalized
gradient of a kernel density estimate. Consider a
region ShðxÞ is a hypersphere of radius h in which
point x is a center of Nw samples. The sample MS is
defined as

MhðxÞ ¼
1

Nw

X
xk2ShðxÞ

xk � xð Þ. (9)

Value h was set as half of the second eigenvalue l2
in this study. Compute the MS vector MhðxÞ using
the training samples belonging to the codeword cj,
and shift to the next position. Repeat the moving
process to refine the codeword.

3.3. PCA-based seed re-initialization

Since the results of CNN-ART algorithm are
influenced by the initialization problem, a local
optimal solution is obtained. Besides, the codewords
in low utility are frequently generated from the local
optimal solution. As mentioned in the previous
section, there are four problems that frequently
occur in many proposed approaches. In order to
remedy these problems, a PCA-based seed re-
initialization procedure was performed to generate
a new codebook. Using this procedure, the inference
of initial conditions was reduced. In addition, the
probability of finding an optimal solution was
increased, and the number of low-utilized codeword
was thus decreased. The clustering results of NN-
based and MS-based procedures were applied in the
seed re-initialization module. Generally, the large
clusters were split into several smaller clusters,
and the small clusters with low utility were
discarded and merged into a bigger cluster. The
splitting rules are designed as follows: consider Ns

split clusters and Nm merged clusters. Nm cluster
centers were discarded, and Nm new cluster centers
were generated for Ns clusters. On average, Nm=Ns

new cluster centers were generated for each
larger cluster. The clusters were sorted based
on their sizes. Thereafter, the largest Ns clusters
and the smallest Nm clusters were selected to
split and discarded in this module, respectively.
In this study, the number of new centers depended
on a generation rate r. Nm ¼ rNc new centers
were generated in each iteration, and Ns ¼ 3. In
addition, value r was decreased by the distortion d
between two iterations. Next, the PCA-based
strategy to generate new cluster centers is designed
as follows.

3.3.1. PCA-based seed selection

PCA is the most popular technique in many
applications. Suppose there are M training samples
possessing the feature vectors of length m. Image
blocks of size 4 by 4, e.g. m ¼ 16, are frequently
encoded in image compression. The covariance
matrix S is defined as S ¼

PM
k¼1ðxk � mÞðxk � mÞT,

where m denotes the sample center. The major K

eigenvectors fi corresponding with the largest K

eigenvalues li comprise the major distributions of
these samples. The samples can be represented by
the K eigenvectors called bases with the minimal
errors. That means the new centers located at the
major bases have higher probabilities than the other
randomly selected ones. Consider a specified cluster
cj of a larger size which was split by Nm=Ns new
centers. The samples belonging to cluster cj gener-
ated the first K major bases, K ¼ 3 in this study.
The samples were projected to a specified axis, fi,
i ¼ 1; 2; 3, to obtain the temporary point with scalar
values. Those temporary points were re-clustered
into Nm=Ns clusters by the traditional K-mean
clustering method with 1D feature values. The
clustered centers of temporary points were the
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candidates of new centers. The temporary center on
the first axis f1 with 1D value l was also a point
with the coordinate lf1 of dimension m in the
original space. Similarly, the samples were projected
and were re-clustered on the other axes to obtain the
new candidate centers. The distance variances of the
3Nm=Ns candidate clusters were calculated and
sorted. Finally, Nm=Ns candidate centers with the
first Nm=Ns smallest variances were selected to be
the new centers.

3.3.2. Adaptive learning rate for seed selection

In this study, the adaptive learning rules were
designed to avoid the divergence. The generation
rate r was adapted due to the distortion d between
two iterations. The distortion d is defined as

d ¼
ð1=NpÞ

PNp

k¼1dðxk; qt�1ðxkÞÞ � ð1=NpÞ
PNp

k¼1dðxk; qtðxkÞÞ

ð1=NpÞ
PNp

k¼1dðxk; qt�1ðxkÞÞ
,

(10)

q is the mapping function for vector xk and its
corresponding codeword. The adaptive rules
described in [16] were utilized to vary the learning
rate. Three parameters x;k, and Z should be
determined and three conditions were considered
as follows:
1.
 If the distortion d increased by more than
parameter x ¼ 0:04, the learning rate was multi-
plied by parameter Z ¼ 1:05. The rate r would be
high to generate more possible new seeds. In
addition, the new seeds generated in this iteration
were discarded.
2.
 If the distortion d decreased, the new seeds were
accepted. The learning rate was multiplied by
parameter k ¼ 0:9. The number of new seeds was
decreased according to the decreasing rate.
3.
 If the distortion increased by less than parameter
x, the rate was unchanged for finely adapting the
seed positions.

In summary, these three modules were iteratively
performed. The NN module played a clustering
role, the MS module refined the codewords, and
the PCA module assigned the new and better seeds.
The PCA module tried to find the possible
codewords near to the optimal solution. According
to the sample distribution, the large clusters
were split into several smaller clusters to reduce
the distortion. Besides, it discarded the codewords
with low utility and re-assigned the better ones
with high utility. PCA module could solve the
problems of codebook initialization, codeword
utility, and local optimization. The MS module
moved each codeword toward a better position with
a high sample density. It could improve the
performance of codeword utility and solution
optimization. Since these modules were iteratively
performed, a near global optimal solution was
found, the low-utilized codewords were decreased,
the poor initial seeds were discarded, and the
influences of sample sequences were decreased.
Thereafter, the proposed iterative scheme could
solve the four problems of clustering and designed
as follows:

3.3.3. Algorithm of PNM
Input: A training set X ¼ fx1; x2; . . . ; xNp
g of size

Np.

Output: A set of cluster centers C ¼ fc1; c2; . . . ; cNc
g

of size Nc.

Step 1: I
nitialize the parameter r.

Step 2: C
luster the training samples sequentially to

obtain the cluster centers using the neural
net-based clustering.
Step 3: F
or each codeword cj, compute the mean

shift vector using the training samples in
cluster cj, and shift to the next position.
Step 4: P
CA-based seed re-initialization.

S
tep 4.1: D
etermine Ns split and Nm ¼ rNc

merged clusters based on their
size, e.g. codeword utility.
S
tep 4.2: F
or each split cluster cj:
1
. C
ompute the eigenvectors and
eigenvalues from the samples
in cluster cj.
2
. P
roject the samples to the first
three eigenvectors f1;f2, and
f3, e.g. projection axes.
3
. O
n each projection axis, the
samples were clustered using
the 1D projected values.
4
. S
elect Nm=Ns candidate
centers with the smallest
variances to be the new seeds
in the next iteration.
S
tep 4.3: I
gnore Nm codewords with low
utility.
Step 5: R
e-calculate the parameters r and d.

Step 6: R
epeat Steps 2 to 6 until a converged state

occurs, e.g. do0:01.
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4. Experimental results
In this section, some experiments were conducted
to show the efficiency of the proposed method. The
PSNR value is the popular measurement to evaluate
the compressing algorithms. The benchmark images
of 512 by 512 pixels used in the experiments are
shown in Fig. 1. In this study, several experiments
were designed to test the performance of the
algorithm compared with others.

The first three experiments were conducted to
show the effectiveness of the found codebooks.
First, an experiment was designed for the evaluation
of the codebook size. Two images ‘Lena’ and
‘Pepper’ were encoded using codebook sizes 32,
64, 128, and 256. The codebooks were generated by
the LBG [1], ELBG [2], GVQ [5], GSAVQ [5],
CNN-ART [6], CNN-ART-LBG, ILBG [4], ISM
[3], MD [10], and PNM approaches, respectively.
Fig. 1. The images used in this study: (a) ‘Lena’, (b) ‘Pepper’, (c) ‘F-16’,

‘Girl’, (j) ‘Couple’, (k) ‘Baboon’, and (l) ‘Aerial’.
The comparisons using PSNR-based measurement
were made between the algorithms as shown in
Table 1. In this table, the CNN-ART-LBG algo-
rithm is an approach combining the CNN-ART and
LBG approaches. Here, the codebook was first
generated from the CNN-ART algorithm, and the
final codebook was refined by the LBG algorithm.
Similarly, the GSAVQ algorithm is an approach
using the genetic algorithm encoding and the
simulated annealing technique. The proposed ap-
proach is clearly superior to the others. Next, two
experiments for the codebook generality were
conducted. The ‘Lena’ image was used to be the
training image and to generate a codebook in the
second experiment. The codebook was used to
encode and decode the images ‘Pepper’, ‘F-16’,
‘Sailboat’, and ‘Tiffany’ as shown in Fig. 1(b)–(e).
The PSNR values generated by 10 algorithms
are tabulated in Table 2. Similar to the second
(d) ‘Sailboat’, (e) ‘Tiffany’, (f) ‘Goldhill’, (g) ‘Toys’, (h) ‘Zelda’, (i)
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Table 1

The comparison of 10 algorithms for encoding two images ‘Lena’ and ‘Pepper’ in various codebook sizes

Size LBG ELBG GVQ GSAVQ C-ART CAL ILBG ISM MD PNM

(a) Image ‘Lena’

32 25.77 27.85 27.72 27.90 26.47 26.57 27.51 26.35 27.56 28.86

64 27.65 28.93 28.70 28.73 28.05 28.15 28.12 27.92 28.61 30.54

128 28.74 29.80 29.84 30.00 28.94 29.04 29.02 29.01 29.65 31.66

256 30.19 32.10 32.21 32.39 30.69 30.89 31.05 30.55 32.05 32.76

(b) Image ‘Pepper’

32 25.67 27.65 27.62 27.61 26.27 26.47 27.42 26.24 27.48 28.75

64 27.64 28.53 28.75 28.52 28.15 28.23 28.03 28.16 28.51 30.32

128 28.54 29.85 29.75 30.13 28.56 28.94 28.99 28.91 29.55 31.25

256 30.49 32.32 32.32 32.09 30.25 30.09 31.98 30.45 32.01 32.62

C-ART, CNN-ART; CAL, CNN-ART-LBG.

Table 2

The PSNR values for various images encoded by the codebook generated by the training vectors of image ‘Lena’

Size LBG ELBG GVQ GSAVQ C-ART CAL ILBG ISM MD PNM

(a) Image ‘Pepper’

32 24.62 26.88 26.69 26.73 25.17 25.37 25.84 25.25 26.55 27.97

64 26.48 27.95 27.61 27.72 27.02 27.15 27.12 26.95 27.48 28.94

128 27.60 28.73 28.74 28.86 27.84 27.96 28.01 27.85 28.65 29.86

256 29.11 31.09 31.36 31.44 29.89 30.01 30.84 29.85 31.03 31.91

(b) Image ‘F�16’

32 25.12 27.85 27.29 27.53 25.52 25.92 26.85 25.64 27.15 28.01

64 26.95 28.99 28.01 28.52 27.35 27.75 27.85 27.41 27.94 29.55

128 28.01 29.83 29.14 29.56 28.51 28.81 28.86 28.55 29.06 30.95

256 29.91 31.92 31.16 31.54 30.31 30.71 30.78 30.35 31.05 32.81

(c) Image ‘Sailboat’

32 23.02 25.75 25.19 25.33 23.42 23.82 24.85 23.65 25.15 26.03

64 24.75 26.79 26.02 26.32 25.05 25.55 25.74 25.44 26.01 27.65

128 25.81 27.63 27.04 27.46 26.21 26.62 26.95 26.43 27.02 28.85

256 27.71 29.82 29.06 29.44 28.11 28.55 28.74 27.43 29.03 30.75

(d) Image ‘Tiffany’

32 25.72 27.78 27.65 27.73 26.02 26.42 27.13 26.34 27.52 27.78

64 27.58 28.85 28.71 28.69 27.85 28.15 28.43 27.92 28.53 29.31

128 28.70 29.63 29.64 30.46 29.12 29.42 29.44 29.23 29.55 29.92

256 29.91 31.95 31.26 31.84 30.21 30.51 30.73 30.32 31.22 32.72
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experiment, four images were used to generate the
codebook as shown in Fig. 1(b)–(e). Seven images,
Fig. 1(f)–(l), were encoded and decoded by the
generated codebook. The PSNR values for various
images are tabulated in Table 3. From these tables,
the generality of the codebook generated by PNM is
more robust than the others.

The last three experiments were conducted to
compare the algorithms on the codebook initializa-
tion, the codeword utility, and the sequence of
training vectors problems. Similar to the first three
experiments, 10 algorithms were executed for
different factors in various codebook sizes. These
results are shown in Tables 4–6.

The statistical utility rates of codewords were
obtained in various compression rates as listed in
Table 4(a). The ‘Lena’ image was encoded and
decoded in this experiment. The compression rates
were set as 0.5625, 0.625, and 0.6875BPP. From this
table, the PNM algorithm generated more highly
utilized codewords than the other algorithms in
various rates. The codebook generated by the PNM
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Table 3

The PSNR values for various images encoded by the codebook generated from images ‘Lena’, ‘Pepper’, ‘F-16’, ‘Sailboat’ and ‘Tiffany’

Size LBG ELBG GVQ GSAVQ C-ART CAL ILBG ISM MD PNM

(a) Image ‘Goldhill’

32 24.22 26.28 26.59 26.63 24.87 25.07 25.84 25.01 26.01 27.27

64 26.28 27.35 27.21 27.52 26.72 26.85 26.95 26.82 27.21 28.44

128 27.40 28.43 28.34 28.66 27.24 27.46 28.01 27.34 28.23 29.36

256 29.01 31.19 31.06 31.15 29.39 29.51 30.54 29.53 31.01 31.51

(b) Image ‘Toys’

32 24.92 27.45 26.89 27.13 25.12 25.52 26.57 25.45 26.85 27.95

64 26.55 28.59 27.85 28.22 27.05 27.35 27.54 27.31 27.81 29.35

128 27.81 29.43 28.95 29.06 28.11 28.45 28.75 28.43 28.89 30.53

256 29.51 31.45 30.86 31.14 29.95 30.35 30.56 30.31 30.84 32.41

(c) Image ‘Zelda’

32 22.72 25.35 24.89 24.93 23.12 23.42 24.35 23.41 24.85 25.82

64 24.35 26.39 25.72 25.92 24.85 25.15 25.51 25.01 25.69 27.25

128 25.41 27.23 26.64 27.06 25.91 26.22 26.45 26.12 26.59 28.35

256 27.31 29.32 28.86 29.04 27.81 28.15 28.56 28.06 28.84 30.25

(d) Image ‘Girl’

32 25.32 27.38 27.25 27.33 25.62 26.02 26.94 25.95 27.22 27.88

64 27.18 28.45 28.31 28.49 27.35 27.75 27.97 27.71 28.28 28.91

128 28.30 29.23 29.24 30.06 28.72 29.02 29.15 28.94 29.21 30.52

256 29.51 31.45 30.86 31.34 29.85 29.91 30.45 29.89 30.83 31.82

(e) Image ‘Couple’

32 25.44 27.45 27.55 27.63 25.72 26.22 27.01 26.19 27.34 27.68

64 27.25 28.55 28.61 28.82 27.45 27.95 28.25 27.92 28.42 28.95

128 28.35 29.43 29.54 30.56 28.82 29.22 29.26 29.12 29.31 30.92

256 29.55 31.65 30.96 31.54 29.95 30.01 30.51 29.98 30.92 32.12

(f) Image ‘Baboon’

32 24.35 26.32 26.64 26.81 24.77 25.27 25.94 25.24 26.25 27.25

64 26.30 27.34 27.40 27.52 26.73 26.95 27.08 26.91 27.23 28.24

128 27.45 28.55 28.42 28.61 27.34 27.66 28.12 27.64 28.37 29.46

256 29.12 31.25 31.24 31.54 29.49 29.91 30.89 29.85 31.16 31.96

(g) Image ‘Aerial’

32 24.55 26.62 26.94 27.01 24.97 25.37 26.12 25.34 26.58 27.45

64 26.50 27.74 27.80 27.92 26.93 27.15 27.35 27.12 27.69 28.44

128 27.65 28.85 28.92 29.11 27.64 27.86 28.24 27.84 28.76 29.86

256 29.42 31.45 31.54 31.84 29.79 30.11 31.02 30.01 31.38 32.16
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comprises fewer low-utilized codewords. In order to
show the invariance of the initial codebook, 30
initial codebooks were randomly initialized. Image
‘Lena’ was used to generate the encoding codebooks
by 10 algorithms. The PSNR values for 30 initial
conditions were averaged in various codebook sizes
as tabulated in Table 4(b). Similarly, various
sequences of training vectors of image ‘Lena’ were
randomly generated to test the invariance of sample
sequence. The variance of averaging PSNR values
for these algorithms are shown in Table 4(c). In
general, five images ‘Lena’, ‘Pepper’, ‘F-16’, ‘Sail-
boat’, and ‘Tiffany’ were encoded and decoded to
perform an inside test as tabulated in Table 5. Seven
images ‘Goldhill’, ‘Toys’, ‘Zelda’, ‘Girl’, ‘Couple’,
‘Baboon’ and ‘Aerial’ were decoded using the
codebook generated from the previous five training
images. The results of this outside test are tabulated
in Table 6 for different factors. From these three
tables, the proposed approach has the smallest
variance of PSNR values. Our proposed algorithm
can be proven to be superior to the others.
Additionally, the training time for various algo-
rithms is shown in Fig. 2. Initially, the performance
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Table 4

The comparisons for 10 algorithms for different factors encoding and decoding the image ‘Lena’

BPP LBG ELBG GVQ GSAVQ C-ART CAL ILBG ISM MD PNM

(a) The utility rates in various compression rates

0.5625 81.50 96.67 96.57 96.58 85.45 87.65 90.51 86.15 96.45 97.52

0.625 78.58 95.45 95.51 95.61 81.88 83.58 89.15 82.56 95.28 96.12

0.6875 76.84 94.55 94.12 94.34 79.65 81.75 88.54 80.43 94.05 95.24

(b) The variance of PSNR values using randomly initialized codebooks

Size

32 4.51 1.58 1.15 1.05 4.11 4.01 2.15 2.57 1.65 0.95

64 4.12 1.33 1.12 0.95 3.82 3.72 2.06 2.24 1.54 0.83

128 3.85 1.15 0.93 0.87 3.55 3.35 1.95 2.13 1.34 0.72

256 3.53 0.91 0.85 0.76 3.23 3.13 1.56 2.06 1.23 0.65

(c) The variance of PSNR values using different sequences of training vectors

32 4.21 1.28 1.04 1.01 4.01 3.85 2.21 2.68 1.78 0.96

64 4.02 1.13 1.01 0.89 3.52 3.02 2.18 2.34 1.65 0.82

128 3.55 1.05 0.85 0.81 3.21 2.95 2.01 2.24 1.54 0.70

256 3.23 0.81 0.78 0.71 3.03 2.85 1.72 2.21 1.35 0.61

BPP: Bits per pixel, %.

Table 5

The comparisons of an inside test for different factors

BPP LBG ELBG GVQ GSAVQ C-ART CAL ILBG ISM MD PNM

(a) The utility rates in various compression rates

0.5625 81.45 96.62 96.51 96.52 85.39 87.59 90.45 86.11 96.39 97.47

0.625 78.52 95.41 95.46 95.55 81.82 83.51 89.09 82.52 95.22 96.07

0.6875 76.78 94.49 94.07 94.28 79.61 81.69 88.49 80.37 94.01 95.19

(b) The variance of PSNR values using randomly initialized codebooks

Size

32 4.54 1.62 1.18 1.09 4.15 4.05 2.18 2.61 1.69 0.98

64 4.15 1.36 1.16 0.99 3.86 3.76 2.09 2.28 1.58 0.87

128 3.88 1.19 0.97 0.91 3.58 3.38 1.98 2.17 1.38 0.76

256 3.57 0.95 0.89 0.79 3.27 3.17 1.61 2.11 1.26 0.69

(c) The variance of PSNR values using different sequences of training vectors

32 4.26 1.34 1.09 1.06 4.07 3.92 2.27 2.74 1.83 1.01

64 4.07 1.18 1.07 0.95 3.58 3.07 2.24 2.39 1.71 0.88

128 3.61 1.11 0.91 0.86 3.27 3.01 2.07 2.31 1.61 0.76

256 3.29 0.87 0.84 0.77 3.09 2.91 1.78 2.27 1.41 0.67

BPP: Bits per pixel, %.
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of the proposed approach was similar to that of
CNN-ART. The PSNR value was increased after
the MS and PCA modules. After 350 s, the PSNR
value of the proposed approach was the highest one.

5. Conclusions

In this paper, a novel algorithm has been proposed
to find the better solution for VQ. Four problems in
the clustering process have been solved using the
NN-based clustering, the MS-based refinement, and
the PCA-based seed re-initialization modules. These
three modules were repeatedly performed to obtain
the better codebook. Some experiments were con-
ducted to make a comparison with the other
algorithms on the codebook initialization, the found
solution, the codeword utility, and the sequence of
samples problems. From the experimental results, the
proposed algorithm performed better than the others
under the PSNR criterion.
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Table 6

The comparisons of an outside test for different factors

BPP LBG ELBG GVQ GSAVQ C-ART CAL ILBG ISM MD PNM

(a) The utility rates in various compression rates

0.5625 81.39 96.55 96.44 96.45 85.32 87.51 90.38 86.04 96.32 97.41

0.625 78.46 95.34 95.39 95.48 81.75 83.45 89.01 82.44 95.15 96.01

0.6875 76.71 94.42 94.01 94.21 79.54 81.62 88.42 80.31 93.94 95.11

(b) The variance of PSNR values using randomly initialized codebooks

Size

32 4.59 1.68 1.24 1.15 4.21 4.11 2.24 2.67 1.75 1.03

64 4.21 1.42 1.21 1.05 3.92 3.82 2.15 2.33 1.65 0.93

128 3.93 1.25 1.03 0.96 3.63 3.44 2.04 2.23 1.45 0.81

256 3.62 0.99 0.94 0.84 3.33 3.24 1.66 2.17 1.32 0.75

(c) The variance of PSNR values using different sequences of training vectors

32 4.32 1.41 1.15 1.12 4.13 3.97 2.32 2.81 1.88 1.07

64 4.13 1.24 1.13 1.01 3.65 3.13 2.31 2.45 1.77 0.94

128 3.67 1.17 0.97 0.92 3.34 3.07 2.12 2.37 1.68 0.82

256 3.35 0.93 0.91 0.83 3.15 2.96 1.84 2.33 1.47 0.74

BPP: Bits per pixel, %.

Fig. 2. The comparison of execution time for various algorithms.

C.-C. Han et al. / Signal Processing 87 (2007) 799–810 809
Acknowledgment

The work was supported by National Science
Council of Taiwan under Grant nos. NSC93-2213-
E-239-020 and NSC94-2213-E-239-012.
References

[1] Y. Linde, A. Buzo, R.M. Gray, An algorithm for vector

quantizer design, IEEE Trans. Commun. 28 (1980) 84–95.

[2] G. Patane, M. Russo, The enhanced LBG algorithm, Neural

Networks 14 (2001) 1219–1237.



ARTICLE IN PRESS
C.-C. Han et al. / Signal Processing 87 (2007) 799–810810
[3] T. Kaukoranta, P. Franti, O. Nevalainen, Iterative split-and-

merge algorithm for vector quantization codebook genera-

tion, Optical Eng. 10 (1998) 2726–2732.

[4] J. Haber, H.-P. Seidel, Using an enhanced lbg algorithm to

reduce the codebook error in vector quantization, in:

Proceedings of the IEEE International Computer Graphics

Conference, 2000, pp. 99–104.

[5] H.-C. Huang, J.-S. Pan, Z.-M. Lu, S.-H. Sun, H.-M. Hang,

Vector quantization based on genetic simulated annealing,

Signal Processing 81 (2001) 1513–1523.

[6] T.-C. Lin, P.-T. Yu, Centroid neural network adaptive

resonance theory for vector quantization, Signal Processing

83 (2003) 649–654.

[7] A. Laha, N.R. Pal, B. Chanda, Design of vector quantizer for

image compression using self-organizing feature map and

surface fitting, IEEE Trans. Image Process. 13 (2005) 1291–1303.

[8] A. Buzo, A.H. Gray, R.M. Gray, J.D. Markel, Speech

coding based upon vector quantization, IEEE Trans.

Acoust. Speech Signal Process. ASSP-92 (1980) 562–574.

[9] C.-C. Chang, I.-C. Lin, Novel full-search schemes for

speeding up image coding using vector quantization, Real

Time Imaging 10 (2004) 95–102.
[10] C.K. Chan, C.K. Ma, A fast method of designing better

codebooks for image vector quantization, IEEE Trans.

Comm. 42 (1994) 237–242.

[11] Z. Pan, K. Kotani, T. Ohmi, Fast encoding method for

vector quantization using modified L2-norm pyramid, IEEE

Signal Process. Lett. 12 (2005) 609–612.

[12] P.-Y. Chen, An efficient prediction algorithm for image

vector quantization, IEEE Trans. Systems Man Cybernet. 34

(2004) 740–746.

[13] Y.-L. Huang, R.-F. Chang, A fast finite-state algorithm

for generating RGB palettes of color quantized images,

J. Inform. Eng. 20 (2004) 771–782.

[14] G.A. Carpenter, S. Grossberg, The ART of adaptive pattern

recognition by a self-organization neural network, Compu-

ter 21 (1988) 77–88.

[15] D. Commaiciu, P. Meer, Mean shift: a robust approach

toward feature space analysis, IEEE Trans. Pattern Anal.

Machine Intell. 24 (2002) 603–619.

[16] M.T. Hagan, H.B. Demuth, M.H. Beale, Neural Network

Design, Thomson Learning, 1996.


	A novel approach for vector quantization using a �neural network, mean shift, and principal component �analysis-based seed re-initialization
	Introduction
	Background
	Enhanced LBG algorithm
	Centroid neural network adaptive resonance theory (CNN-ART)

	PNM for VQ
	NN-based clustering
	MS-based refinement
	PCA-based seed re-initialization
	PCA-based seed selection
	Adaptive learning rate for seed selection
	Algorithm of PNM


	Experimental results
	Conclusions
	Acknowledgment
	References


